Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-{[4-(pyridin-4-yl)pyrimidin-2-yl]sulfanyl}acetate

Chuan-Hu Wang

Department of Applied Chemistry and Environmental Engineering, Bengbu College, Bengbu, 233030, People's Republic of China Correspondence e-mail: wangchuanhu2003@yahoo.com.cn

Received 31 January 2011; accepted 4 February 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.115; data-to-parameter ratio = 17.5.

In the title molecule, C₁₃H₁₃N₃O₂S, the pyridine and pyrimidine rings form a dihedral angle of 3.8 $(1)^{\circ}$. The crystal packing exhibits weak intermolecular C-H···O hydrogen bonds.

Related literature

For details of the synthesis and general background to the rational design and assembly of coordination polymers with thioethers, see: Dong et al. (2008, 2009). For the crystal structures of coordination complexes with related ligands, see: Du et al. (2004); Zhu et al. (2009).

Experimental

Crystal data C13H13N3O2S $M_r = 275.33$

Triclinic, $P\overline{1}$ a = 8.6579 (8) Å

b = 9.7394 (9) A	Z = 2
c = 9.9188 (8) Å	Mo $K\alpha$ radiation
$\alpha = 62.661 \ (6)^{\circ}$	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 71.416 \ (5)^{\circ}$	T = 291 K
$\gamma = 65.024 \ (6)^{\circ}$	$0.32 \times 0.24 \times 0.18 \text{ mm}$
$V = 665.35 (10) \text{ Å}^3$	
Data collection	
Bruker SMART CCD area-detector	11760 measured reflections
diffusatomaton	2021 independent reflection

diffractometer	3021 independent reflections
Absorption correction: multi-scan	2387 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.032$
$T_{\min} = 0.917, T_{\max} = 0.966$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	173 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
3021 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3-H3···O1 ⁱ	0.93	2.52	3.383 (2)	154
C7-H7···O1 ⁱⁱ	0.93	2.61	3.373 (2)	140

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x, y, z + 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author is indebted to the National Natural Science Foundation of China (grant No. 20871039) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5047).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28, 1040-1048.

Dong, H. Z., Zhu, H. B., Tong, T. F. & Gou, S. H. (2008). J. Mol. Struct. 891, 266-271.

Du, M., Zhao, X. J. & Wang, Y. (2004). Dalton Trans. pp. 2065-2072.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.

Acta Cryst. (2011). E67, o690 [doi:10.1107/S1600536811004272]

Ethyl 2-{[4-(pyridin-4-yl)pyrimidin-2-yl]sulfanyl}acetate

C.-H. Wang

Comment

Remarkable attention has been paid to the rational design and assembly of new coordination polymers with thioethers (Dong *et al.*, 2008; 2009; Du *et al.*, 2004; Zhu *et al.*, 2009). Herewith we report the synthesis and crystal structure of the title compound (I)- a new derivative of 4-(4-pyridinyl)pyrimidine-2-thiol.

In (I) (Fig. 1), the pyridine and pyrimidine rings form a dihedral angle of $3.8 (1)^{\circ}$. The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by similar procedure reported in the literature (Dong *et al.*, 2008; 2009), To a solution of 4-(4-pyridinyl)pyrimidine-2-thiol (3.78 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) in dry ethanol (100 ml), ethyl 2-bromoacetate (3.34 g, 20 mmol) in CCl_4 (30 ml) was added. The mixture was stirred and refluxed for 8 h. After cooling, precipitates were filtered, washed by water and ethanol, and dried in vacuum. Single crystals suitable for X-ray diffraction were grown from methanol solution by slow evaporation in air at room temperature.

Refinement

All H atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with $U_{iso}(H)=1.2-1.5 U_{eq}$ of the parent atom.

Figures

Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.

Ethyl 2-{[4-(pyridin-4-yl)pyrimidin-2-yl]sulfanyl}acetate

Crystal data C₁₃H₁₃N₃O₂S

Z = 2

$M_r = 275.33$
Triclinic, PT
Hall symbol: -P 1
<i>a</i> = 8.6579 (8) Å
<i>b</i> = 9.7394 (9) Å
c = 9.9188 (8) Å
$\alpha = 62.661 \ (6)^{\circ}$
$\beta = 71.416 (5)^{\circ}$
$\gamma = 65.024 \ (6)^{\circ}$
$V = 665.35 (10) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer	3021 independent reflections
Radiation source: fine-focus sealed tube	2387 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
ϕ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -11 \rightarrow 10$
$T_{\min} = 0.917, \ T_{\max} = 0.966$	$k = -12 \rightarrow 12$
11760 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.115$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0658P)^2 + 0.067P]$ where $P = (F_0^2 + 2F_c^2)/3$
3021 reflections	$(\Delta/\sigma)_{max} < 0.001$
173 parameters	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

F(000) = 288.0 $D_{\rm x} = 1.374 \text{ Mg m}^{-3}$

 $\theta = 2.3-27.5^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 291 KBlock, colorless $0.32 \times 0.24 \times 0.18 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3021 reflections

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.21141 (18)	0.00339 (18)	0.89933 (17)	0.0411 (3)
C2	0.3174 (2)	-0.21822 (19)	1.10105 (19)	0.0496 (4)
H2	0.3517	-0.3308	1.1555	0.060*
C3	0.3336 (2)	-0.12042 (18)	1.15846 (18)	0.0459 (4)
Н3	0.3793	-0.1652	1.2484	0.055*
C4	0.27871 (17)	0.04721 (17)	1.07653 (16)	0.0376 (3)
C5	0.28647 (18)	0.16653 (17)	1.12645 (16)	0.0388 (3)
C6	0.3582 (2)	0.1176 (2)	1.25464 (18)	0.0478 (4)
Н6	0.4018	0.0070	1.3141	0.057*
C7	0.3641 (2)	0.2347 (2)	1.2930 (2)	0.0568 (4)
H7	0.4126	0.1991	1.3794	0.068*
C8	0.2241 (2)	0.3332 (2)	1.04370 (19)	0.0525 (4)
H8	0.1740	0.3725	0.9573	0.063*
C9	0.2372 (3)	0.4407 (2)	1.0913 (2)	0.0660 (5)
Н9	0.1960	0.5521	1.0335	0.079*
C10	0.0836 (2)	0.2913 (2)	0.6641 (2)	0.0515 (4)
H10A	0.0315	0.3439	0.5718	0.062*
H10B	-0.0042	0.3227	0.7439	0.062*
C11	0.2273 (2)	0.35667 (18)	0.63290 (16)	0.0422 (3)
C12	0.2788 (2)	0.5879 (2)	0.6083 (2)	0.0620 (5)
H12A	0.3426	0.6012	0.5056	0.074*
H12B	0.3603	0.5258	0.6805	0.074*
C13	0.1774 (3)	0.7498 (3)	0.6187 (3)	0.0927 (8)
H13A	0.1014	0.8124	0.5432	0.139*
H13B	0.2542	0.8066	0.6002	0.139*
H13C	0.1108	0.7354	0.7193	0.139*
N1	0.3051 (2)	0.39441 (19)	1.21466 (18)	0.0644 (4)
N2	0.21695 (15)	0.11055 (14)	0.94434 (14)	0.0392 (3)
N3	0.25523 (17)	-0.15909 (16)	0.97173 (16)	0.0482 (3)
01	0.37818 (15)	0.29263 (14)	0.59842 (13)	0.0516 (3)
O2	0.15904 (14)	0.50272 (13)	0.64426 (13)	0.0512 (3)
S1	0.14603 (6)	0.07492 (5)	0.72151 (5)	0.05259 (16)

Fractional atomic coordinates and	sotropic or equivalent isotro	onic displacement	parameters (Å	2)
i actional alonne cool antales and		pie anspiaeenieni	parameters [11	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0408 (8)	0.0366 (8)	0.0520 (8)	-0.0153 (6)	-0.0068 (6)	-0.0197 (6)
C2	0.0542 (9)	0.0320 (8)	0.0601 (10)	-0.0176 (7)	-0.0095 (7)	-0.0119 (7)
C3	0.0514 (9)	0.0366 (8)	0.0489 (8)	-0.0168 (7)	-0.0111 (7)	-0.0113 (7)
C4	0.0365 (7)	0.0348 (7)	0.0428 (7)	-0.0142 (6)	-0.0023 (6)	-0.0159 (6)
C5	0.0402 (8)	0.0373 (8)	0.0415 (7)	-0.0142 (6)	-0.0015 (6)	-0.0188 (6)
C6	0.0573 (9)	0.0410 (8)	0.0463 (8)	-0.0143 (7)	-0.0124 (7)	-0.0162 (7)

C7	0.0713 (11)	0.0575 (11)	0.0533 (9)	-0.0186 (9)	-0.0167 (8)	-0.0282 (8)
C8	0.0712 (11)	0.0398 (9)	0.0521 (9)	-0.0135 (8)	-0.0201 (8)	-0.0192 (7)
C9	0.1000 (15)	0.0390 (9)	0.0678 (11)	-0.0152 (9)	-0.0285 (10)	-0.0238 (8)
C10	0.0549 (9)	0.0403 (8)	0.0677 (10)	-0.0094 (7)	-0.0271 (8)	-0.0213 (8)
C11	0.0533 (9)	0.0353 (8)	0.0405 (7)	-0.0108 (7)	-0.0175 (6)	-0.0130 (6)
C12	0.0637 (11)	0.0517 (10)	0.0791 (12)	-0.0294 (9)	-0.0024 (9)	-0.0277 (9)
C13	0.0989 (17)	0.0653 (14)	0.133 (2)	-0.0416 (13)	0.0127 (15)	-0.0589 (15)
N1	0.0889 (11)	0.0530 (9)	0.0664 (9)	-0.0200 (8)	-0.0205 (8)	-0.0321 (8)
N2	0.0434 (7)	0.0334 (6)	0.0460 (7)	-0.0143 (5)	-0.0076 (5)	-0.0172 (5)
N3	0.0534 (8)	0.0346 (7)	0.0629 (8)	-0.0176 (6)	-0.0102 (6)	-0.0199 (6)
01	0.0513 (7)	0.0473 (7)	0.0572 (7)	-0.0104 (5)	-0.0108 (5)	-0.0241 (5)
O2	0.0521 (6)	0.0386 (6)	0.0680 (7)	-0.0148 (5)	-0.0100 (5)	-0.0237 (5)
S1	0.0670 (3)	0.0416 (2)	0.0651 (3)	-0.0161 (2)	-0.0253 (2)	-0.0246 (2)

Geometric parameters (Å, °)

C1—N2	1.3323 (17)	С8—Н8	0.9300
C1—N3	1.3367 (19)	C9—N1	1.332 (2)
C1—S1	1.7582 (16)	С9—Н9	0.9300
C2—N3	1.329 (2)	C10—C11	1.514 (2)
C2—C3	1.383 (2)	C10—S1	1.7858 (16)
С2—Н2	0.9300	C10—H10A	0.9700
C3—C4	1.387 (2)	C10—H10B	0.9700
С3—Н3	0.9300	C11—O1	1.1984 (18)
C4—N2	1.3456 (18)	C11—O2	1.3342 (17)
C4—C5	1.4886 (19)	C12—O2	1.4529 (19)
C5—C8	1.385 (2)	C12—C13	1.479 (3)
C5—C6	1.388 (2)	C12—H12A	0.9700
C6—C7	1.381 (2)	C12—H12B	0.9700
С6—Н6	0.9300	С13—Н13А	0.9600
C7—N1	1.325 (2)	С13—Н13В	0.9600
С7—Н7	0.9300	С13—Н13С	0.9600
С8—С9	1.385 (2)		
N2—C1—N3	127.86 (14)	C11—C10—S1	115.61 (11)
N2-C1-S1	118.93 (11)	C11—C10—H10A	108.4
N3—C1—S1	113.18 (10)	S1—C10—H10A	108.4
N3—C2—C3	123.15 (14)	C11-C10-H10B	108.4
N3—C2—H2	118.4	S1—C10—H10B	108.4
С3—С2—Н2	118.4	H10A—C10—H10B	107.4
C2—C3—C4	117.32 (15)	O1—C11—O2	124.33 (14)
С2—С3—Н3	121.3	O1-C11-C10	126.61 (14)
С4—С3—Н3	121.3	O2-C11-C10	109.02 (13)
N2—C4—C3	120.88 (13)	O2—C12—C13	107.85 (15)
N2-C4-C5	116.22 (12)	O2-C12-H12A	110.1
C3—C4—C5	122.90 (13)	C13—C12—H12A	110.1
C8—C5—C6	116.98 (13)	O2—C12—H12B	110.1
C8—C5—C4	120.72 (13)	C13—C12—H12B	110.1
C6—C5—C4	122.29 (13)	H12A—C12—H12B	108.5
C7—C6—C5	119.32 (15)	C12—C13—H13A	109.5

120.3	C12—C13—H13B	109.5
120.3	H13A—C13—H13B	109.5
124.28 (16)	C12—C13—H13C	109.5
117.9	H13A—C13—H13C	109.5
117.9	H13B-C13-H13C	109.5
119.20 (15)	C7—N1—C9	116.14 (14)
120.4	C1—N2—C4	116.09 (12)
120.4	C2—N3—C1	114.65 (12)
124.07 (17)	C11—O2—C12	116.28 (12)
118.0	C1—S1—C10	101.64 (7)
118.0		
	120.3 120.3 124.28 (16) 117.9 117.9 119.20 (15) 120.4 120.4 124.07 (17) 118.0 118.0	120.3 C12—C13—H13B 120.3 H13A—C13—H13B 124.28 (16) C12—C13—H13C 117.9 H13A—C13—H13C 117.9 H13B—C13—H13C 119.20 (15) C7—N1—C9 120.4 C1—N2—C4 120.4 C2—N3—C1 124.07 (17) C11—O2—C12 118.0 C1—S1—C10

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
C3—H3···O1 ⁱ	0.93	2.52	3.383 (2)	154
C7—H7···O1 ⁱⁱ	0.93	2.61	3.373 (2)	140
~				

Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y, z+1.

